Lecture 24

Principle of Inclusion-Exclusion (contd.) and its applications

Principle of Inclusion-Exclusion

Theorem: Let $A_{1}, A_{2}, \ldots, A_{n}$ be the finite sets. Then,

$$
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|=\sum_{j=1}^{n}(-1)^{j-1} \sum_{i_{1}, i_{2}, \ldots, i_{j}}\left|A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{j}}\right|
$$

Proof: We show that each element in $A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ is counted exactly once on the RHS. Let $x \in A_{1} \cup A_{2} \cup \ldots \cup A_{n}$.

Let $S=\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$ such that $x \in A_{i}$ iff $i \in S$. Let $s=|S|$.
Observation: $A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{k}}$ contains x if and only if $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq S$.

Principle of Inclusion-Exclusion

x is counted or subtracted the following times on the RHS:

- Counted s times in single intersections.
- Subtracted $\binom{s}{2}$ times in double intersections.
- Counted $\binom{s}{3}$ times in triple intersections.

> Follows from the alternating addition and subtraction of binomial coefficients.

So, RHS counts x

$$
s-\binom{s}{2}+\binom{s}{3}-\binom{s}{4} \cdots+(-1)^{s-1}\binom{s}{s}=1
$$

Derangemenets: Application of PIE

Definition: A permutation of $[n]$ that has no fixed points, i.e., no i is in the i th position, is called a derangement of [n].

Examples: 23451, 21453, 54231, 41523 are some derangements of [5].
$24315,23145,51342,32451$ are some permutations of [5] which are not derangements.
Theorem: The number of derangements of $[n]$ is, $D(n)=\sum_{i=0}^{n}(-1)^{i} \frac{n!}{i!}$
Proof: \# derangements of $[n]=n!-$ \# permutations of $[n]$ with at least one fixed point
Let A_{i} denote the set of permutations (of $[n]$ in which element i is in the i th position.
We want to find $\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|=\sum_{j=1}^{n}(-1)^{j-1} \sum_{i_{1}, i_{2}, \ldots, i_{j}}\left|A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{j}}\right|$

Derangemenets: Application of PIE

$$
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|=\sum_{j=1}^{n}(-1)^{j-1} \sum_{i_{1}, i_{2}, \ldots, i_{j}}\left|A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{j}}\right|
$$

Contributions on the RHS from:

- Single intersections: $\sum\left|A_{i}\right|=n .(n-1)!=n$!
- Double intersections: $-\sum_{i_{1}, i_{2}}\left|A_{i_{1}} \cap A_{i_{2}}\right|=-\binom{n}{2}(n-2)!=-\frac{n!}{2!}$
- j intersections: $(-1)^{j-1} \sum_{i_{1}, i_{2}, \ldots, i_{j}}\left|A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{j}}\right|=(-1)^{j-1}\binom{n}{j}(n-j)!=(-1)^{j-1} \frac{n!}{j!}$

$$
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|=n!-\frac{n!}{2!}+\frac{n!}{3!}-\ldots+(-1)^{n-1} \frac{n!}{n!}
$$

Derangemenets: Application of PIE

$$
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|=n!-\frac{n!}{2!}+\frac{n!}{3!}-\ldots+(-1)^{n-1} \frac{n!}{n!}
$$

Now,

$$
\begin{aligned}
D(n) & =n!-\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right| \\
& =n!-n!+\frac{n!}{2!}-\frac{n!}{3!}+\ldots+(-1)^{n} \frac{n!}{n!} \\
& =\sum_{i=0}^{n}(-1)^{i} \frac{n!}{i!}
\end{aligned}
$$

Counting Surjections: Application of PIE

Let n and k be positive integers such that $n \geq k$.
How many surjections are there from $[n]$ to $[k]$?
We want to find out this
\# surjections from $[n]$ to $[k]=k^{n}-\#$ functions that are not surjections from $[n]$ to $[k]$

$$
\text { Total \# functions from }[n] \text { to }[k] \text {. }
$$

Observation: A non-surjective function misses at least one element in the range.
Let A_{i} be the set of functions from $[n]$ to $[k]$ whose range does not contain i.
We want to find $\left|A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right|=\sum_{j=1}^{k}(-1)^{j-1} \sum_{i_{1}, i_{2}, \ldots, i_{j}}\left|A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{j}}\right|$

Counting Surjections: Application of PIE

$$
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right|=\sum_{j=1}^{k}(-1)^{j-1} \sum_{i_{1}, i_{2}, \ldots, i_{j}}\left|A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{j}}\right|
$$

Contributions on the RHS from:

- Single intersections: $\sum\left|A_{i}\right|=k .(k-1)^{n}$
- Double intersections: $-\sum_{i_{1}, i_{2}}\left|A_{i_{1}} \cap A_{i_{2}}\right|=-\binom{k}{2}(k-2)^{n}$
- j intersections: $(-1)^{j-1} \sum_{i_{1}, i_{2}, \ldots, i_{j}}\left|A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{j}}\right|=(-1)^{j-1}\binom{k}{j}(k-j)^{n}$

$$
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|=\sum_{j=1}^{k}(-1)^{j-1}\binom{k}{j}(k-j)^{n} \longleftarrow \quad \begin{aligned}
& \text { Subtract this from } k^{n} \\
& \text { to get \# surjections. }
\end{aligned}
$$

